This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

Synthesis and chemistry of tris(2-pyridyl)phosphine and bis(2pyridyl)phenylphosphine complexes of mercury(II) $\mathrm{X}(\mathrm{X}=\mathrm{Br}, \mathrm{Cl})$ and X ray crystal structural determination of $\left[\mathrm{HgBr}_{2}\left(\mathrm{PPh}(2-\mathrm{py})_{2}\right)_{2}\right]$

Ali Nemati Kharat ${ }^{\text {a }}$; Bahareh Tamaddoni Jahromia ${ }^{\text {a }}$; Abolghasem Bakhoda ${ }^{\text {a; }}$; Alireza Abbasi ${ }^{\text {a }}$ ${ }^{\text {a }}$ School of Chemistry, University College of Science, University of Tehran, Tehran, Iran

Online publication date: 13 October 2010

To cite this Article Kharat, Ali Nemati, Tamaddoni Jahromi, Bahareh, Bakhoda, Abolghasem and Abbasi, Alireza(2010) 'Synthesis and chemistry of tris(2-pyridyl)phosphine and bis(2-pyridyl)phenylphosphine complexes of mercury(II) X (X $=\mathrm{Br}, \mathrm{Cl})$ and X-ray crystal structural determination of $\left[\mathrm{HgBr}_{2}\left(\operatorname{PPh}(2-\mathrm{py})_{2}\right)_{2}\right]^{\prime}$, Journal of Coordination Chemistry, 63: 21, 3783-3791
To link to this Article: DOI: 10.1080/00958972.2010.520083
URL: http://dx.doi.org/10.1080/00958972.2010.520083

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


Synthesis and chemistry of tris(2-pyridyl)phosphine and bis(2-pyridyl)phenylphosphine complexes of mercury(II) $\mathrm{X}(\mathrm{X}=\mathrm{Br}, \mathrm{Cl})$ and X -ray crystal structural determination of $\left[\mathrm{HgBr}_{2}\left(\mathrm{PPh}(2-\mathrm{py})_{2}\right)_{2}\right]$

ALI NEMATI KHARAT*, BAHAREH TAMADDONI JAHROMI, ABOLGHASEM BAKHODA and ALIREZA ABBASI
School of Chemistry, University College of Science, University of Tehran, Tehran, Iran

(Received 15 April 2010; in final form 16 July 2010)

Abstract

Mercury(II) halide complexes $\left[\mathrm{HgX}_{2}\left(\mathrm{P}(2-\mathrm{py})_{3}\right)_{2}\right]\left(\mathrm{X}=\mathrm{Br}(\mathbf{1}), \mathrm{Cl}\right.$ (2)) and $\left[\mathrm{HgX}_{2}\left(\mathrm{PPh}(2-\mathrm{py})_{2}\right)_{2}\right]$ $\left(\mathrm{X}=\mathrm{Br}\right.$ (3), Cl (4)) containing $\mathrm{P}(2-\mathrm{py})_{3}$ and $\mathrm{PPh}(2-\mathrm{py})_{2}$ ligands $\left(\mathrm{P}(2-\mathrm{py})_{3}\right.$ is tris(2-pyridyl) phosphine and $\mathrm{PPh}(2-\mathrm{py})_{2}$ is bis(2-pyridyl)phenylphosphine) were synthesized in nearly quantitative yield by reaction of corresponding mercury(II) halide and appropriate ligands. The synthesized complexes are fully characterized by elemental analysis, melting point determination, IR, ${ }^{1} \mathrm{H}$, and ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectroscopies. Furthermore, the crystal structure of $\left[\mathrm{HgBr}_{2}\left(\mathrm{PPh}(2-\mathrm{py})_{2}\right)_{2}\right]$ determined by X-ray diffraction is also reported.

Keywords: Mercury(II) halide complex; $\mathrm{P}(2-\mathrm{py})_{3} ; \mathrm{PPh}(2-\mathrm{py})_{2} ;{ }^{31} \mathrm{P}-\mathrm{NMR} ; \mathrm{X}$-ray diffraction

1. Introduction

Pyridylphosphines are convenient building blocks for the construction of transition metal complexes [1-4]. Many transition metals preferentially bind through nitrogen of pyridyl rings to form sandwich or half-sandwich complexes [5-8]. Especially, for the ligands, such as $\mathrm{P}(2-\mathrm{py})_{3}$ and $\mathrm{PPh}(2-\mathrm{py})_{2}, \mathrm{P}-$ monodentate coordination modes are rare [9-11]. Coordination and structural chemistry of mercury(II) halide complexes with ligands containing a variety of donors has been a matter of interest over several decades [12-15]. Following the seminal work of Mann and co-worker in 1940 [16], mercury(II) halides are known to form a wide range of stoichiometrics with tertiary phosphine ligands. By far, the most common are $1: 1$ and $2: 1$ complexes, $\left(\mathrm{R}_{3} \mathrm{P}\right)_{n} \mathrm{HgX}_{2}(n=1,2$; $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$. The $2: 1$ complexes have a monomeric pseudo-tetrahedral structure with degree of distortion depending on the σ-donor ability and steric requirement of the phosphines [17-20]. In this article, four complexes of Hg (II) with the previously described [21, 22] pyridylphosphine, $\mathrm{P}(2-\mathrm{py})_{3}$ and $\mathrm{PPh}(2-\mathrm{py})_{2}$, are reported.

[^0]
2. Experimental

2.1. Materials and instruments

All manipulations for preparation of ligands were carried out under air and moisturefree conditions under nitrogen, using standard Schlenk or glove box techniques. Diethyl ether was dried over lithium aluminum hydride $\left(\mathrm{LiAlH}_{4}\right)$ and freshly distilled prior to use. Methanol, methylene chloride, n-butyllithium (15% solution in n-hexane), 2-bromopyridine, and phosphorus trichloride were purchased from Merck and except for n-butyllithium, purified before use according to standard methods. DMF, HgCl_{2}, and HgBr_{2} were purchased from Fluka and were used as received. The ligands were prepared as described previously [21, 22]. Melting points are uncorrected and were obtained by an Electrothermal 9200 melting point apparatus. Infrared spectra from 250 to $4000 \mathrm{~cm}^{-1}$ of solid samples were taken as 1% dispersion in CsI pellets using a Shimadzu-470 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra were recorded at room temperature in DMSO- d_{6} on a Bruker AVANCE 300 and 121.49 MHz , respectively. The NMR spectra are referenced to $\mathrm{Me}_{4} \mathrm{Si}\left({ }^{1} \mathrm{H}\right)$ or $\mathrm{H}_{3} \mathrm{PO}_{4} 85 \%\left({ }^{31} \mathrm{P}\right)$ as external standards. Elemental analysis was performed using a Heraeus CHN-O Rapid analyzer.

2.2. Synthesis of $\left[\mathrm{Hg} \mathrm{Br}_{2}\left(\mathrm{P}(2-\mathrm{py})_{3}\right)_{2}\right]$ (1)

$\mathrm{HgBr}_{2}(0.077 \mathrm{mmol}, 0.028 \mathrm{~g})$ was dissolved in 10 mL MeOH and a solution of $\mathrm{P}(2-\mathrm{py})_{3}$ ($0.039 \mathrm{mmol}, 0.01 \mathrm{~g}$) in $5 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added with vigorous stirring. A white precipitate was immediately formed. The slurry was stirred for 30 min . The solvent was completely removed, and the resulting white residue was washed with cold MeOH $(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and finally dried in vacuo. White powder was recrystallized from concentrated DMF solution. Yield $94.4 \% ;$ m.p. $=308^{\circ} \mathrm{C}(\mathrm{dec})$. IR $\left(\mathrm{cm}^{-1}\right): 3047(\mathrm{w})$, 1651(b), 1570(m), 1508(w), 1447(m), 1422(s), 1283(w), 1151(w), 1082(w), 1042(w), 986(m), 764(s), 736(m), 617(w), 523(s), 510(s), 496(s), 420(w), 395(w), 279(w). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d $\left.{ }_{6}, \quad 300 \mathrm{MHz}, \quad 25^{\circ} \mathrm{C}\right): \quad \delta=7.57-7.59(\mathrm{~d}) \quad(J=4.5), \quad 7.82-7.86(\mathrm{~m}), \quad 7.97(\mathrm{~b})$, 8.69-8.70(d) $(J=4.2) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}, 121.4 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta=16.73 \mathrm{ppm}$. Anal. found: $\mathrm{N} 9.30 \%$, C 40.58%, H 2.75%; Calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{HgN}_{6} \mathrm{P}_{2}$ (890): N 9.43\%, C 40.44%, H 2.72%.

2.3. Synthesis of $\left[\mathrm{HgCl}_{2}\left(\mathrm{P}(2-\mathrm{py})_{3}\right)_{2}\right]$ (2)

This complex was prepared in a manner analogous to $\mathbf{1}$ where $\mathrm{HgCl}_{2}(0.077 \mathrm{mmol}$, 0.021 g) dissolved in 10 mL MeOH was used. Resulting white powder was recrystallized from hot concentrated DMF solution. Yield 93.8%, m.p. $=320^{\circ} \mathrm{C}<(\mathrm{dec})$. IR $\left(\mathrm{cm}^{-1}\right)$: 3058(w), 2977(w), 1966(w), 1859(w), 1569(s), 1448(s), 1423(s), 1283(m), 1152(m), 1083(m), 1043(m), 987(s), 769(s), 738(s), 525(s), 508(s), 447(w), 422(w), 396(w), 292(w), $247(\mathrm{~m}) .{ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}, \quad 300 \mathrm{MHz}, \quad 25^{\circ} \mathrm{C}\right): \quad \delta=7.59, \quad 7.98, \quad 8.68 .{ }^{31} \mathrm{P}-\mathrm{NMR}$ (DMSO- $\mathrm{d}_{6}, 121.4 \mathrm{MHz}, 25^{\circ} \mathrm{C}$): $\delta=16.05 \mathrm{ppm}$. Anal. found: $\mathrm{N} 10.36 \%, \mathrm{C} 45.06 \%$, H 3.05%; Calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{HgN}_{6} \mathrm{P}_{2}$ (802): $\mathrm{N} 10.48 \%$, C 44.93%, H 3.02%.

2.4. Synthesis of $\left[\mathrm{Hg} \mathrm{Br}_{2}\left(\mathrm{PPh}(2-p y)_{2}\right)_{2}\right]$ (3)

$\mathrm{HgBr}_{2}(0.077 \mathrm{mmol}, 0.028 \mathrm{~g})$ was dissolved in 10 mL MeOH and a solution of $\mathrm{PPh}(2-\mathrm{py})_{2}(0.039 \mathrm{mmol}, 0.01 \mathrm{~g})$ in $5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added with vigorous stirring. A white precipitate was immediately formed. The slurry was stirred for 30 min . The mixture of solvents was removed by rotary evaporator and the white residue was washed with cold $\mathrm{MeOH}(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and dried in vacuo. Resulting white powder was recrystallized from concentrated DMF solution. Yield 94.7\%; m.p. $=313^{\circ} \mathrm{C}(\mathrm{dec}) . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 3043(\mathrm{~m}), 2981(\mathrm{w}), 1568(\mathrm{~s}), 1481(\mathrm{~m}), 1450(\mathrm{~s}), 1422(\mathrm{~s})$, 1320(w), 1283(m), 1155(w), 1099(m), 1045(w), 987(m), 768(s), 742(s), 691(s), 617(w), 511(s), 492(sh), 428(w), 395(w), 277(w). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$: $\delta=7.48-7.52(\mathrm{~m}), \quad 7.56-7.61(\mathrm{~m}), \quad 7.66-7.72(\mathrm{~m}), \quad 8.58 . \quad{ }^{31} \mathrm{P}-\mathrm{NMR} \quad\left(\mathrm{DMSO}_{6} \mathrm{~d}_{6}\right.$, $\left.121.4 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta=17.3 \mathrm{ppm}(J=284)$. Anal. found: N $6.19 \%, \mathrm{C} 45.21 \%$, H 2.99%; Calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{HgN}_{4} \mathrm{P}_{2}$ (888): $\mathrm{N} 6.30 \%$, C 43.24%, H 2.95%. Crystals suitable for crystallographic structure determination were crystallized from hot concentrated DMF solution.

2.5. Synthesis of $\left[\mathrm{HgCl}_{2}\left(\mathrm{PPh}(2-\mathrm{py})_{2}\right)_{2}\right]$ (4)

This complex was prepared in a manner analogous to $\mathbf{3}$ where $\mathrm{HgCl}_{2}(0.077 \mathrm{mmol}$, 0.021 g) dissolved in 10 mL MeOH was used. White powder was recrystallized from hot concentrated DMF solution. Yield 96.1%; m.p. $=318^{\circ} \mathrm{C}(\mathrm{dec})$. IR $\left(\mathrm{cm}^{-1}\right): 3044(\mathrm{~m})$, 2985(w), 1969(w), 1568(s), 1482(w), 1450(s), 1425(m), 1322(w), 1283(w), 1187(w), $1100(\mathrm{~m}), 1045(\mathrm{w}), 988(\mathrm{~s}), 770(\mathrm{~s}), 744(\mathrm{~s}), 693(\mathrm{~s}), 618(\mathrm{w}), 512(\mathrm{~s}), 429(\mathrm{w}), 395(\mathrm{w}), 248(\mathrm{w})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d ${ }_{6}, 300 \mathrm{MHz}, 25^{\circ} \mathrm{C}$): $\delta=7.49-7.54(\mathrm{~m}), 7.58-7.61,7.72-7.78(\mathrm{~m})$, 7.89 (b), 8.56 (b). ${ }^{31} \mathrm{P}-\mathrm{NMR}$ (DMSO-d ${ }_{6}, 121.4 \mathrm{MHz}, 25^{\circ} \mathrm{C}$): $\delta=17.31 \mathrm{ppm}$. Anal. found: N 6.89%, C 48.19%, H 3.31\%; Calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{HgN}_{4} \mathrm{P}_{2}$ (800): $\mathrm{N} 7.00 \%$, C 48.04%, H 3.28\%.

2.6. Crystal structure determination and refinement

X-ray diffraction data were collected at room temperature on small crystals glued on top of glass capillaries by means of a Stoe imaging plane. The X-Area program was used for indexing and integrating the single crystal reflections. The structure of the title compound was solved by direct methods using SHELXS-97 and refined by full matrix least squares on F^{2}, SHELXL-97 [23]. Minimum and maximum final electron densities were -0.969 to $0.614 \mathrm{e}^{-3}$, respectively. Absorption corrections were performed with the programs X-RED [24] and X-SHAPE [25]. Symmetry equivalent reflections were used to optimize crystal shape and size. All non-hydrogen atoms were refined anisotropically. Aromatic hydrogens were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.93 \AA$) and treated as riding on the respective carrier atom, with $U_{\text {iso }}(\mathrm{H})=1.2(\mathrm{C})$. Plots were produced with Diamond, and Mercury programs, and PLATON [26] software was used to prepare materials for publication. A summary of the crystal data, experimental details, and refinement results is given in table 1.

Table 1. Crystallographic and structure refinements data for 3.

Formula	$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{HgN}_{4} \mathrm{P}_{2}$
Formula weight	888.90
Temperature (K)	295(2)
Wavelength, λ (A)	0.71073
Crystal system	Monoclinic
Space group	$P 2_{1} / \mathrm{c}$
Unit cell dimensions ($\left({ }^{\circ}{ }^{\circ}\right)$	
a	9.766(2)
b	19.316(4)
c	17.598(3)
β	100.72(3)
Volume (\AA^{3}), Z	3261.8(11), 4
Absorption coefficient (mm^{-1})	7.30
$F(000)$	1704
Crystal size (mm^{3})	$0.24 \times 0.20 \times 0.11$
θ range for data collection (${ }^{\circ}$)	2.1-26.0
Index ranges	$\begin{aligned} & -9 \leq h \leq 12 \\ & -23 \leq k \leq 23 ; \\ & -21 \leq l \leq 21 \end{aligned}$
Data collected	6402
$R_{\text {int }}$	0.058
Restraints/parameters	0/370
Goodness of fit on F^{2} (S)	1.01
Final R indices (obs. data) ${ }^{\text {a }}$	$\begin{aligned} & R_{1}=0.0410 \\ & w R_{2}=0.0586 \end{aligned}$
R indices (all data) ${ }^{\text {a }}$	$\begin{aligned} & R_{1}=0.0684 \\ & w R_{2}=0.0634 \end{aligned}$
Largest difference peak and hole (e \AA^{-3})	0.61 and -0.97

3. Results and discussion

3.1. Synthesis of ligands and complexes

$\mathrm{P}(2-\mathrm{py})_{3}$ and $\mathrm{PPh}(2-\mathrm{py})_{2}$ were synthesized according to previously reported methods from 2-lithiopyridine and appropriate chlorophosphine [21, 22], as shown in scheme 1.

Reaction of mercury(II) halides in methanol with $\mathrm{P}(2-\mathrm{py})_{3}$ and $\mathrm{PPh}(2-\mathrm{py})_{2}$, dissolved in methylene chloride, in a $2: 1$ mole ratio resulted in white precipitates. Colorless crystals of all complexes, suitable for X-ray analysis, were grown by slow evaporation of concentrated DMF solution (scheme 2). The complexes were characterized by CHN elemental analysis, melting point determination, IR, ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectroscopies. The crystal structure of $\left[\mathrm{HgBr}_{2}\left(\mathrm{PPh}(2-\mathrm{py})_{2}\right)_{2}\right]$ was determined by X-ray single crystal analysis. The $v \mathrm{Hg}-\mathrm{Cl}$ vibrations were found at 270 and $271 \mathrm{~cm}^{-1}$ [27]. The $v \mathrm{Hg}-\mathrm{Br}$ vibrations were not observed. The stretching vibrations of $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ bonds of pyridine rings were found between $1422-1450 \mathrm{~cm}^{-1}$ and $1568-1570 \mathrm{~cm}^{-1}$ as strong absorptions.

3.2. Investigation of $1-4$ in the solution state

The ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra of all complexes were recorded in DMSO- d_{6} and expected satellites due to ${ }^{1} J\left({ }^{199} \mathrm{Hg}^{31} \mathrm{P}\right)$ coupling $\left({ }^{199} \mathrm{Hg} 16.84 \%\right.$ natural abundance, nuclear spin

Scheme 1. Synthesis of ligands.

$\mathrm{X}=\mathrm{Br}$, Complex (3) and $\mathrm{X}=\mathrm{Cl}$, Complex (4)
Scheme 2. Synthesis of 1-4.
$I=1 / 2)$ were observed. The $\delta\left({ }^{31} \mathrm{P}\right)$ and ${ }^{1} J\left({ }^{199} \mathrm{Hg}^{31} \mathrm{P}\right)$ coupling constants are listed in table 2. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR parameters of $\mathbf{1 - 4}$ are summarized in table 2 . NMR data for $\mathbf{1 - 4}$ are consistent with structures in scheme 2 , showing similar phosphorus.

The trend of the $\delta(P)$ values in $\mathbf{1 - 4}$ (table 2) is the same. The same is true for the ${ }^{1} J(\mathrm{Hg}-\mathrm{P})$ values for $\mathbf{1 - 4}$ in agreement with the same coordination mode for all complexes.

Table 2. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR data for $\mathbf{1 - 4 .}{ }^{\text {a }}$

Compound	$\delta(P)$	${ }^{1} J(\mathrm{Hg}-\mathrm{P})$
$\mathbf{1}$	16.73	349
$\mathbf{2}$	16.05	2270
$\mathbf{3}$	17.30	284
$\mathbf{4}$	17.31	1048

${ }^{\text {a }} J$ values in Hz. Spectra were run at 298 K. DMSO-d ${ }_{6}$ was used as solvent.

According to table 2 , the ${ }^{1} J(\mathrm{Hg}-\mathrm{P})$ coupling constants for bromide complexes are much smaller than chloride complexes. Generally, the J value is related to the bond distance, the longer bond distance resulted in a low value of coupling constant [28-30].

The ${ }^{1} \mathrm{H}$-NMR resonances ($\mathrm{DMSO}-\mathrm{d}_{6}$) for the aromatic protons of pyridine rings for $\mathbf{1 - 4}$ occur between 7.48 and 8.70 . For all of them, the integrated intensities are in agreement with the proposed structures illustrated in scheme 2 .

3.3. IR spectra

IR spectra of $\mathbf{1}$ and $\mathbf{2}$ show distinct vibrational bands at 1570,1508 , and $1569 \mathrm{~cm}^{-1}$ assigned as $\mathrm{C}=\mathrm{N}$ bond vibrations (pyridine rings) and at 1447, 1423, 1448, and $1422 \mathrm{~cm}^{-1}$ which were attributed to the $\mathrm{C}=\mathrm{C}$ bond vibrations. Bands at $617,523,510$, and 496 for $\mathbf{1}$, and 619,525 , and $508 \mathrm{~cm}^{-1}$ for $\mathbf{2}$ are attributed to the vibrations of the P-C bond. The IR spectra of $\mathbf{3}$ and $\mathbf{4}$ show distinct vibrational bands at 1568, 1481, and $1482 \mathrm{~cm}^{-1}$ assigned as $\mathrm{C}=\mathrm{N}$ bond vibrations, and at 1450,1422 , and $1425 \mathrm{~cm}^{-1}$ which were attributed to the $\mathrm{C}=\mathrm{C}$ bond vibrations. Bands at 617,510 , and 492 for $\mathbf{3}$, and 618 and $512 \mathrm{~cm}^{-1}$ for $\mathbf{4}$ have been attributed to $\mathrm{P}-\mathrm{C}$ vibrations. Further information about complex formation was obtained from Far-IR spectra. New bands at 247 and $248 \mathrm{~cm}^{-1}$ have been assigned to $\mathrm{Hg}-\mathrm{Cl}$ vibrations in 2 and 4, respectively [27].

3.4. Description of the molecular structure of $\left[\mathrm{Hg} \mathrm{Br}_{2}\left(\mathrm{PPh}(2-\mathrm{py})_{2}\right)_{2}\right]$ (3)

Colorless prismatic crystals of $\mathbf{3}$ were obtained by recrystallization of $\mathbf{3}$ in hot DMF. Also, $\mathbf{3}$ crystallizes in the monoclinic space group $P 2_{1} / c$ (no. 14) with four molecules in the unit cell. The structure consists of a mercury with two bromides and two tris(2-pyridyl)phosphines that are monodentate P -donors, giving a distorted tetrahedral geometry, figure 1. The $\mathrm{Hg}-\mathrm{P}\left(\mathrm{PhP}(2-\mathrm{py})_{2}\right)$ average bond distance is $2.5030(15) \AA$ and the $\mathrm{Hg}-\mathrm{Br}$ average bond distance is $2.6309(8) \AA$. These bond distances are comparable to similar mercuric bromide-tertiary phosphine complexes [27-30].

All pyridine rings have nitrogens pointing in the same direction as the phosphorus (figure 1). The phenyl rings $\mathrm{A}(\mathrm{C} 11-\mathrm{C} 16)$ and $\mathrm{A}^{\prime}(\mathrm{C} 27-\mathrm{C} 32)$ and pyridine rings $\mathrm{B}(\mathrm{N} 1 /$ $\mathrm{C} 1 / \mathrm{C} 5-\mathrm{C} 2), \mathrm{C}(\mathrm{N} 2 / \mathrm{C} 6 / \mathrm{C} 10-\mathrm{C} 7), \mathrm{B}^{\prime}(\mathrm{N} 3 / \mathrm{C} 17 / \mathrm{C} 21-\mathrm{C} 18)$, and C^{\prime} (N4/C23-C26/C22) are, of course, planar. The dihedral angles between related rings in two different (2-pyridyl)phenylphosphine moieties A to $\mathrm{A}^{\prime}, \mathrm{B}$ to B^{\prime}, and C to C^{\prime} are $34.6^{\circ}, 10.6^{\circ}$, and 27.0°, respectively.

Figure 1. ORTEP diagram of $\left[\mathrm{HgBr}_{2}\left(\mathrm{PPh}(2-\mathrm{py})_{2}\right)_{2}\right]$ (3) with atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 40% probability level.

Figure 2. Inter- and intramolecular $\pi \cdots \pi$ interactions in $\left[\operatorname{HgBr}_{2}\left(\operatorname{PPh}(2-\mathrm{py})_{2}\right)_{2}\right]$ (3).

Relatively strong intra $\pi \cdots \pi$ interactions exist between two pyridine rings (B and B^{\prime}) from two different (2-pyridyl)phenylphosphine moieties ($C g 1 \cdots C g 3=3.82 \AA, C g 1$ and $C g 3$ being the rings B and B^{\prime}, respectively; figure 2). Crystal packing is dominated by $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi \cdots \pi$ interactions (figures 2 and 3) between neighboring molecules

Figure 3. $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction observed in packing of $\mathbf{3}$.

Table 3. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for 3.

$\mathrm{Hg}(1)-\mathrm{P}(1)$	$2.5124(15)$	$\mathrm{P}(2)-\mathrm{Hg}(1)-(\mathrm{P} 1)$	$116.59(5)$
$\mathrm{Hg}(1)-\mathrm{P}(2)$	$2.4937(15)$	$\mathrm{P}(2)-\mathrm{Hg}(1)-\mathrm{Br}(1)$	$111.43(4)$
$\mathrm{Hg}(1)-\mathrm{Br}(1)$	$2.6194(8)$	$\mathrm{P}(1)-\mathrm{Hg}(1)-\mathrm{Br}(1)$	$105.97(4)$
$\mathrm{Hg}(1)-\mathrm{Br}(2)$	$2.6424(11)$	$\mathrm{P}(2)-\mathrm{Hg}(1)-\mathrm{Br}(2)$	$111.31(4)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.824(5)$	$\mathrm{P}(1)-\mathrm{Hg}(1)-\mathrm{Br}(2)$	$107.07(4)$
$\mathrm{P}(1)-\mathrm{C}(6)$	$1.811(6)$	$\mathrm{Br}(1)-\mathrm{Hg}(1)-\mathrm{Br}(2)$	$103.52(3)$
$\mathrm{P}(1)-\mathrm{C}(11)$	$1.816(6)$		
$\mathrm{P}(2)-\mathrm{C}(17)$	$1.827(5)$		
$\mathrm{P}(2)-\mathrm{C}(22)$	$1.815(6)$		
$\mathrm{P}(2)-\mathrm{C}(27)$	$1.826(6)$		

$\left(\mathrm{C} 14-\mathrm{H} 14 \cdots C g 2^{\mathrm{i}}=2.90 \AA, C g 4 \cdots C g 2^{\mathrm{ii}}=3.97 \AA, C g 2\right.$ being the ring N2/C6/C10/C9/ $\mathrm{C} 8 / \mathrm{C} 7$, and $\mathrm{C} 44, \mathrm{~N} 4 / \mathrm{C} 22 / \mathrm{C} 26 / \mathrm{C} 25 / \mathrm{C} 24 / \mathrm{C} 23$, with ${ }^{\mathrm{i}}=x, 0.5-y,-0.5+z$, and ${ }^{\mathrm{ii}}=-z$, $0.5+y, 0.5-z$). Crystallographic data, selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are listed in table 3 .

4. Conclusion

Four 2:1 mercuric halide (bromide and chloride) complexes with two multidentate pyridylphosphines, tris(2-pyridyl)phosphine, $\mathrm{P}(2-\mathrm{py})_{3}$, and bis(2-pyridyl)phenylphosphine, $\mathrm{PhP}(2-\mathrm{py})_{2}$, were synthesized. These ligands are monodentate P -donors. The synthesized complexes were characterized fully with IR and NMR. The ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra of these complexes are similar suggesting similar coordination modes. The solid structure of $\left[\mathrm{HgBr}_{2}\left(\mathrm{PPh}(2-\mathrm{py})_{2}\right)_{2}\right]$ was determined by X-ray crystallography.

The packing of $\left[\mathrm{HgBr}_{2}\left(\mathrm{PPh}(2-\mathrm{py})_{2}\right)_{2}\right]$ is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi \cdots \pi$ interactions.

Supplementary material

Full crystallographic details are deposited with the Cambridge Structural Database Centre (CCDC No. 766530 for 3). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: (44)01223336033; Email: deposit@ccdc.ac.uk).

References

[1] F.R. Keene, M.R. Snow, P.J. Stephenson, E.R.T. Tiekink. Inorg. Chem., 27, 2040 (1988).
[2] R.P. Shutte, S.J. Rettig, A.M. Joshi, B.R. James. Inorg. Chem., 36, 5809 (1997).
[3] P.A. Anderson, T. Astley, M.A. Hitchman, F.R. Keene, B. Moubaraki, K.S. Murray, B.W. Skelton, E.R.T. Tiekink, H. Toftlund, A.H. White. J. Chem. Soc., Dalton Trans., 3505 (2000).
[4] A. Steiner, D. Stalke. Organometallics, 14, 2422 (1995).
[5] Y. Ke-Wu, Y. Yuan-Qi, H. Zhong-Xian, W. Yun-Hua. Polyhedron, 15, 79 (1996).
[6] T. Astley, H. Headlam, M.A. Hitchman, F.R. Keene, J. Pilbrow, H. Stratemeier, E.R.T. Tiekink, Y.C. Zhong. J. Chem. Soc., Dalton Trans., 3809 (1995).
[7] K.R. Adam, P.A. Anderson, T. Astley, I.M. Atkinson, J.M. Charnock, C.D. Garner, J.M. Gulbis, T.W. Hambley, M.A. Hitchman, F.R. Keene, E.R.T. Tiekink. J. Chem. Soc., Dalton Trans., 519 (1997).
[8] J.A. Casares, P. Espinet, J.M. Martin-Alvarez, G. Espino, M. Perez-Manrique, F. Vattier. Eur. J. Inorg. Chem., 289 (2001).
[9] C.J.L. Lock, M.A. Turner. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 43, 2096 (1987).
[10] K. Wajda, F. Pruchnik, T. Lis. Inorg. Chim. Acta, 40, 207 (1980).
[11] J.W. Faller, C. Blankenship, B. Whitmore, S. Sena. Inorg. Chem., 24, 4483 (1985).
[12] T.S. Lobana, A. Sanchez, J.S. Casas, A. Castineiras, J. Sordo, M.S. Garcia-Tasende, E.M. Vazquez-Lopez. J. Chem. Soc., Dalton Trans., 4289 (1997).
[13] T.S. Lobana, M.K. Sandhu, M.J. Liddell, E.R.T. Tiekink. J. Chem. Soc., Dalton Trans., 691 (1990).
[14] C.M.V. Stalhandske, I. Persson, M. Sandstrom, M. Aberg. Inorg. Chem., 36, 4945 (1997).
[15] K.K. Cheung, R.S. McEwen, G.A. Sim. Nature, 23, 383 (1965).
[16] R.C. Evans, F.G. Mann, H.S. Peiser, D. Purdie. J. Chem. Soc., 1209 (1940).
[17] N.A. Bell, T.D. Dee, M. Goldstein, P.J. McKenna, I.W. Nowell. Inorg. Chim. Acta, 71, 135 (1983).
[18] N.A. Bell, T.D. Dee, M. Goldstein, T. Jones, I.W. Nowell, P.L. Goggin, R.J. Goodfellow, K. Kessler, D.M. McEwan. J. Chem. Res., (S) 2, (M) 0201 (1981).
[19] D.W. Allen, N.A. Bell, S.T. Fong, L.A. March, I.W. Nowell. Inorg. Chim. Acta, 99, 157 (1985).
[20] N.A. Bell, L.A. March, I.W. Nowell. Inorg. Chim. Acta, 156, 195 (1989).
[21] K. Kurtev, D. Ribola, R.A. Jones, D.J. Cole-Hamilton, G. Wilkinson. J. Chem. Soc., Dalton Trans., 55 (1980).
[22] Y. Xie, C.L. Lee, Y. Yang, S.J. Rettig, B.R. James. Can. J. Chem., 70, 751 (1992).
[23] G.M. Sheldrick. SHELXS-97 and SHELXL-97, University of Gottingen, Germany (1997).
[24] Stoe \& Cie. X-RED, Program for Data Reduction and Absorption Correction (Version 1.28b), Stoe \& Cie GmbH, Darmstadt, Germany (2005).
[25] Stoe \& Cie. X-SHAPE, Program for Crystal Optimization for Numerical Absorption Correction (Version 2.05), Stoe \& Cie GmbH, Darmstadt, Germany (2004).
[26] A.L. Spek. J. Appl. Cryst., 36, 7 (2003).
[27] W. Oberhauser, T. Stempfl, R. Haid, C. Langes, C. Bachmann, H. Kopacka, K.H. Ongania, P. Brüggeller. Polyhedron, 20, 727 (2001).
[28] S.K. Hadjikakou, M. Kubicki. Polyhedron, 19, 2231 (2000).
[29] N.A. Bell, S.J. Coles, M.B. Hursthouse, M.E. Light, K.A. Malik, R. Mansor. Polyhedron, 19, 1719 (2000).
[30] N.A. Bell, S.J. Coles, C.P. Constable, M.B. Hursthouse, M.E. Light, R. Mansor, N.J. Salvin. Polyhedron, 21, 1845 (2002).

[^0]: *Corresponding author. Email: alnema@khayam.ut.ac.ir

